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Abstract. Climatic changes are expected to fundamentally alter discharge and sediment dynamics in glaciated 

high alpine areas, e.g. through glacier retreat, prolonged snow-free periods and more frequent intense rainfall 

events in summer. However, how exactly these hydrological changes will affect sediment dynamics is not yet 

known. 

In the present study, we aim to pinpoint areas and processes most relevant to recent sediment and discharge 15 

dynamics on different spatial and temporal scales in the Ötztal Alpine Region in Tyrol, Austria. Therefore, we 

analyze observed discharge and relatively long suspended sediment time series of up to 15 years from three gauges 

in a nested catchment setup. The catchments range from 100 to almost 800 km² in size with 10 to 30 % glacier 

cover and span an elevation range of 930 to 3772 m a.s.l.. The investigation of satellite-based snow cover maps, 

glacier inventories, mass balances and precipitation data complement the analysis.  20 

Our results indicate that mean annual specific discharge and suspended sediment fluxes are highest in the most 

glaciated sub-catchment and both fluxes correlate significantly with annual glacier mass balances. Furthermore, 

both discharge and suspended sediment loads show a distinct seasonality with low values during winter and high 

values during summer. However, the spring onset of sediment transport is almost synchronous at the three gauges, 

contrary to the spring rise in discharge, which occurs earlier further downstream. 25 

A spatio-temporal analysis of snow cover evolution indicates that the spring increase in sediment fluxes at all 

gauges coincides with the onset of snow melt above 2500 m elevation. Zones above this elevation include glacier 

tongues and recently deglaciated areas, which seem to be crucial for the sediment dynamics in the catchment.  

Precipitation events in summer were associated with peak sediment concentrations and fluxes, but on average 

accounted for only 21 % of the annual sediment yields of the years 2011 to 2020.  30 

We conclude that glaciers and the areas above 2500 m elevation play a dominant role for discharge and sediment 

dynamics in the Ötztal area, while precipitation events play a secondary role. Our study extends the scientific 

knowledge on current hydro-sedimentological changes in glaciated high alpine areas and provides a baseline for 

investigations on projected future changes in hydro-sedimentological system dynamics. 

 35 

 

1 Introduction 

Glaciated high alpine areas are central for discharge and sediment dynamics even beyond their catchment bound-

aries because the discharge and sediment fluxes from these areas are typically much higher (per unit area) than 

from lower-lying areas (Beniston et al., 2018; Hallet et al., 1996; Hinderer et al., 2013; Milliman and Syvitski, 40 

1992). As a consequence, glaciated high alpine areas have disproportionate influence on downstream water quality 

and quantity, flood hazard, hydropower generation and ecological habitats (Huss et al., 2017; Vercruysse et al., 

2017). 

Yet glaciated high alpine areas are also particularly sensitive to climatic change and climate warming is especially 

pronounced here (Gobiet et al., 2014). As a result of the rising temperatures, widespread and accelerating glacier 45 

retreat has been observed for several decades (e.g. Abermann et al., 2009; Sommer et al., 2020). Hydrological 

consequences include changes in water quantities (such as a transient increase in runoff) (Vormoor et al., 2015; 

Wijngaard et al., 2016), streamflow variability (Tiel et al., 2019) and hydrograph timing e.g. due to earlier snow-

melt onset and a prolonged glacier melt period (Hanus et al., 2021; Kormann et al., 2016; Rottler et al., 2021, 

2020).  50 
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Possible climate change impacts on sediment dynamics are manifold, as all of the hydrological changes can affect 

sediment dynamics by changing the magnitude and timing of transport capacities. At the same time, sediment 

supply may change as glacier retreat uncovers vast amounts of sediment previously inaccessible to pluvial and 

fluvial erosion (Carrivick and Heckmann, 2017; Leggat et al., 2015) and as subglacial sediment discharge transi-

ently increases (Delaney and Adhikari, 2020). Intense precipitation events, which are projected to increase in in-55 

tensity and occur more frequently (Bürger et al., 2019; Giorgi et al., 2016; Scherrer et al., 2016), have a higher 

chance of affecting unfrozen material during prolonged snow-free periods (Kormann et al., 2016; Rottler et al., 

2021; Wijngaard et al., 2016) and may thereby lead to a shift in the relative importance of sediment sources. 

Adding to this, permafrost thaw can destabilize hillslopes and facilitate mass movements (Chiarle et al., 2021; 

Huggel et al., 2010; Savi et al., 2020). On the other hand, changes in catchment-scale connectivity can provide 60 

new pathways or close off old pathways for loose material to the receiving waters (Cavalli et al., 2013; Lane et al., 

2017), for example due to the formation of a proglacial lake.  

In order to inform mitigation and adaptation strategies, it is crucial to understand how changes in influencing 

factors and their complex interactions propagate to sediment dynamics, yet to date our understanding is still very 

limited (Huss et al., 2017).  65 

A first step towards facilitating the assessment of future changes is to understand discharge and sediment dynamics 

in the recent past and present. Studies that have embarked on this journey to date have either compared (mean) 

annual sediment yields across a number of sites (e.g. Delaney et al., 2018b; Hinderer et al., 2013; Lalk et al., 2014; 

Micheletti and Lane, 2016; Schöber and Hofer, 2018; Tschada and Hofer, 1990) or investigated dynamics in daily 

or even finer temporal resolution but only at one or two locations (Beylich et al., 2017; Collins, 1996, 1990; Costa 70 

et al., 2018; Guillon et al., 2018; Leggat et al., 2015; Orwin and Smart, 2004; Swift et al., 2005; Tsyplenkov et al., 

2020). However, it is crucial to consider discharge and sediment dynamics in high temporal resolution as well as 

their spatial patterns in order to understand the dominant processes and thereby help inform modelling approaches 

that can put into perspective the effects of future changes.  

In the present study, we aim to pinpoint the areas and processes most relevant to sediment dynamics in combination 75 

with discharge dynamics on several spatial and temporal scales. Our approach builds on three combined discharge 

and sediment gauges in a nested catchment setup in the Ötztal Alpine Region, where discharge data and relatively 

long suspended sediment time series of up to 15 years are available in high temporal resolution for catchments of 

100 to almost 800 km² in size. To improve the existing sediment concentration data set, we improved the relation-

ship between turbidity and suspended sediment concentrations at the gauge in Sölden by operating an automatic 80 

water sampler. To complement our analysis, we investigate glacier inventories and mass balances, precipitation 

data, satellite-based snow cover maps and land cover characteristics. 

More specifically, we (1) explore changes of magnitude and seasonality in discharge and suspended sediment 

fluxes across spatial scales, (2) analyze the seasonal distribution of both fluxes as well as the relative importance 

of (precipitation) events for both fluxes as compared to snow and glacier melt and (3) examine the relative contri-85 

butions of different elevation bands to sediment fluxes in spring using a synoptic view of snow cover evolution 

and sediment flux timing.  
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2 Methods 90 

2.1. Study area 

The study area is a nested catchment setup within the Ötztal valley in Tyrol, Austria (Fig. 1). The Ötztal Alps are 

part of the Ötztal-Stubai massif within the crystalline central Eastern Alps and biotite-plagioclase, biotite and 

muscovite gneisses, variable mica schists and gneissic schists dominate (Strasser et al., 2018). The entire catch-

ment of 783 km² stretches from 931 m a.s.l. at the gauge in Tumpen (T) to 3772 m a.s.l. at the Wildspitze, the 95 

highest summit of Tyrol. Nested within are the 441 km² catchment of the gauge in Sölden (S) at 1343 m a.s.l. and 

the 98 km² catchment of the gauge in Vent (V) at 1891 m a.s.l. (Table 1). The areas in between the gauges Vent 

and Sölden (i.e. the area downstream of Vent and upstream of Sölden) and Sölden and Tumpen have been termed 

S-V and T-S, respectively.  

 100 

 

Figure 1: Nested catchment areas of the three gauging stations Vent, Sölden and Tumpen within the Upper Ötztal, 

Tyrol, Austria. The locations of the Hintereisferner and Vernagtferner glaciers are marked by HEF and VF, 

respectively. ‘VF meteo’ shows the location of the Vernagtferner meteorological station (Bavarian Academy of 

Sciences and Humanities) providing precipitation and air temperature data for the event analysis. Sources: 10 m 105 
DTM of Tyrol (Land Tirol, 2016), Glacier inventory 4, 2015 (Buckel and Otto, 2018), rivers and water bodies by 

tiris.ogd, Hydrography, State of Tyrol.  

 

The climate in the catchment is comparatively dry since it is located in the inner Alpine region and is shielded 

from precipitation arriving from both the North and the South (Kuhn et al., 1982). Annual precipitation recorded 110 

at valley stations such as Vent (687 mm) or Längenfeld (see Fig.1, 730 mm) (Hydrographic yearbook of Austria, 

2016) are much lower than recordings by accumulating rain gauges in altitudes >3000 m, where annual precipita-

tion can exceed 1500 mm (Kuhn et al., 2016; Strasser et al., 2018). The precipitation gradient with elevation has 

been estimated at about 5% per 100 m (Schöber et al., 2014). Mean annual temperature at the gauge in Vent is 2.5 
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°C (Strasser et al., 2018) and increases to 6.3°C at Umhausen (see Fig. 1), 5 km upstream of the Tumpen gauge 115 

(ZAMG, 2013). 

The Ötztaler Ache is one of the largest tributaries of the Inn River and is fed by the Venter Ache and Gurgler Ache 

(Gattermayr, 2013). Upstream of Tumpen, the Ötztaler Ache is largely uninfluenced by hydropower, with few 

small hydroelectric plants upstream of gauge Sölden and Tumpen that do not retain water and temporarily store 

coarse sediment fractions in sand traps. The Ötztaler Ache shows a strong seasonality with a snow and ice melt 120 

dominated peak in summer (e.g. Strasser et al., 2018) and low-flow conditions in winter. 

All sub-catchments are partially glaciated, ranging from almost 28% glacier cover in the Vent catchment to 10 % 

glacier cover in the Tumpen catchment (Table 1). Glaciers in the area are subject to accelerating glacier retreat, as 

can be seen in the difference between the two glacier inventories 3 and 4 from 2006 and 2015 (Buckel and Otto, 

2018; Fischer et al., 2015)(Table 1). The magnitude of this glacier retreat is illustrated in the reduction in glacier 125 

cover from almost 35 % in 2006 to 28 % in 2015 in the Vent catchment. With respect to land cover, high elevations 

are dominated by glaciers and bare rock or sparsely vegetated terrain while lower altitudes are characterized by 

mountain pastures and coniferous forests as well as agriculture in the valley floors. The mean slope decreases from 

Tumpen to Vent.  

 130 

Table 1: Characteristics of the sub-catchments. Calculations based on: 1) DTM of Tyrol, 10m resolution 

(Umweltbundesamt, 2018), 2) Glacier inventory 3 (Fischer et al., 2015) and 3) Glacier inventory 4 (Buckel and Otto, 

2018) using ArcGIS Version 10.6.1. 

Catchment Vent (V) S-V Sölden (S) T-S Tumpen (T) 

Catchment size [km²] 1 98.1 342.7 440.8 342.0 782.8 

Mean elevation  
  (min - max) [m.a.s.l.] 1 

2891  
(1891 - 3772) 

2607  
(1343 - 3619) 

2670 
(1343 - 3772) 

2250  
(931 - 3496) 

2487  
(931 - 3772) 

Mean slope (min – max) [°]1 25 (0 - 76) 29 (0 - 83) 28 (0 - 83) 32 (0 - 83) 30 (0 - 83) 

Glacier cover GI 3 (2006) [%] 2 34.4 14.8 19.2 4.9 12.9 

Glacier cover GI 4 (2015) [%] 3 28.1 11.9 15.6 3.6 10.3 

Glacier cover GI 3 (2006) [km²] 2  33.7 50.8 84.5 16.8 101.3 

Glacier cover GI 4 (2015) [km²] 3 
27.6 41.0 68.6 12.4 81.0 

 
 135 

2.2. Data and analyses 

2.2.1. Discharge and sediment concentration data 

For our analyses, we used discharge and turbidity-based suspended sediment concentration data from the three 

gauging stations Vent (Rofenache), Sölden and Tumpen as depicted in Fig. 1 (Table 2).  

Although discharge data have been recorded by the Hydrographic Service of Tyrol since 1967 and 1976 in Vent 140 

and Tumpen, respectively, we only considered the period of time when concomitant turbidity measurements are 

available i.e. since 2006. This was to focus on analyzing the present and recent past and to exclude long-term 

trends e.g. due to increased glacier ablation since the 1980s (Hock, 2020) as much as possible.  

Sediment concentration data at all stations are acquired by continuous turbidity measurements using optical infra-

red turbidity sensors. At the gauges in Vent and Tumpen, water samples are taken by hand close to the turbidity 145 

probes in the stream and at several points spanning the width of the gauge for calibration to sediment concentra-

tions (for details see Lalk et al., 2014).  
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Table 2: Characteristics and sources of investigated data (HD = Hydrographic Service of Tyrol, Austria; TiWAG = 

Tiroler Wasserkraft AG/Hydropower company of Tyrol). Data of the Hydrographic Service of Tyrol of 2019 and 2020 150 
are preliminary. *Turbidity measurements in Vent and Sölden are interrupted during the winter months to prevent 

damage to the equipment by ice. 

Station Variable Temporal  

resolution 

Spatial  

resolution 

Time period Source 

Vent 

(Rofenache) 

 

Discharge 15 Minutes Gauge measurement 2006 - 2020 HD 

Suspended sediment 

concentrations* 
15 Minutes Gauge measurement 2006 - 2020 HD 

Sölden 

 

Discharge 15 Minutes Gauge measurement 2012 - 2020 TiWAG 

Suspended sediment 

concentrations* 
15 Minutes Gauge measurement 

2012 – 2020  

(2018 missing) 
TiWAG 

Tumpen 

 

Discharge 15 Minutes Gauge measurement 2006 - 2020 HD 

Suspended sediment 

concentrations 
15 Minutes Gauge measurement 2006 - 2020 HD 

All 

catchments 

 

Snow cover daily 250 m 2002 - 2018 Matiu et al., 2020 

 

Similarly, at the gauge in Sölden, water samples taken close to the turbidity sensor were used to translate turbidity 

measurements into a continuous sedigraph from 2012 to 2017 (see Schöber and Hofer, 2018, for details). We took 155 

additional water samples in Sölden in 2019 and 2020 using automatic samplers in order to improve the data situa-

tion especially at rarely sampled high concentrations and to continue observations as measurements by the TiWAG 

had been discontinued after 2017. For this purpose, the turbidity values recorded by the turbidity probe were rec-

orded by a logger programmed to initiate sampling if one of three criteria was met: (i) regular sampling, to ensure 

one sample at least every four days, (ii) threshold-based sampling to obtain samples across the whole range of 160 

possible turbidity values and (iii) event-based sampling, where a sample was initiated if the rise in turbidity was 

exceptional as compared to the time period before. The suction tube of the automatic sampler in Sölden was at-

tached to the turbidity sensor’s case, which was immersed at the side of the channel. Gravimetric sediment con-

centrations SSCg were then determined in the laboratory by filtering the water samples onto glass fiber filters with 

a pore size of 0.45 m and drying the filters at 60°C until the weight was constant (see e.g. Delaney et al., 2018b).  165 

In total, we took 99 samples in Sölden between April 2019 and October 2020. To verify whether these can be 

combined with the 268 samples taken by the TiWAG between 2012 and 2017, we tested for significant differences 

between linear models estimated on the two groups by means of an ANCOVA. This showed no significant differ-

ences between the two linear models. However, strictly speaking, the assumptions for an ANCOVA are violated 

because the residuals of the TiWAG data are not normally distributed (Shapiro-Wilk test, p < 0.001). By contrast, 170 

the residuals of our data are normally distributed (Shapiro-Wilk test, p = 0.03), which allows for the computation 

of confidence and prediction intervals around the linear model (Fig. 2). Since all data points of the TiWAG samples 

are located within the prediction interval and the linear model based on TiWAG data lies within the confidence 

interval of the linear model based on our data, we conclude that there is a good enough agreement to estimate one 

linear model using all 367 available samples. The resulting model (SSC = 1.8487*turbidity + 0.0079, R² = 0.84) 175 

is applied to the complete turbidity time series.  

The variance observed in the SSC-turbidity relationship does not appear to be unusually high compared to other 

studies reporting similar coefficients of determination (Delaney et al., 2018b; Felix et al., 2018) and can be at-

tributed to changes in particle size, shape or color (Merten et al., 2014).  
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 180 

Figure 2: Gravimetric suspended sediment concentrations in samples vs. turbidity measured at gauge Sölden: TiWAG 

samples taken between 2012 and 2017 are all located within the prediction interval of the linear regression based on 

our samples and the linear model based on TiWAG data is located within the confidence interval.  

 

2.2.2. Sediment event analysis  185 

To assess the relative importance of sediment events in time and space, we analyzed the largest suspended sediment 

flux events of each year in Vent and Tumpen. We excluded Sölden from the analysis, as comparability would be 

limited since data are missing before 2012 and in 2018. 

For the Vent catchment, we analyzed the events with respect to the antecedent air temperature and precipitation 

conditions. Since availability of high-quality (i.e. gap-free) data in high temporal resolution is limited, we confined 190 

this analysis to the years 2011 to 2020. We based our analysis on discharge and sediment concentration data of the 

Vent gauge and precipitation and air temperature data of the Vernagtferner station (2640 m a.s.l., located 6.25 km 

west of the gauge in Vent within the catchment) provided by the Bavarian Academy of Sciences. We visually 

identified suspended sediment flux (SSF) peaks that were clearly higher than the characteristic daily amplitude of 

the respective season i.e. the days before and after. In order to be classified as a precipitation event, precipitation 195 

had to be > 3 mm in the 24 hours ahead of the end of the event. While this might seem like very little precipitation 

to become erosive, it has to be considered that precipitation can vary greatly within the almost 100 km² catchment. 

Therefore, we considered the hydrograph shape as additional indication, which typically shows a sharp increase 

in case of a precipitation event. For classification as a melt-induced event, liquid precipitation had to be smaller 

than 3 mm within 24 hours and the mean absolute temperature had to be above 0°C. Additionally, we considered 200 

temporal development in daily snow cover data (Sect. 2.2.3) for the verification of snowmelt events. We deter-

mined the beginning and end of the events visually. In this, we aimed for the beginning of the rising limb and the 

return to the before-event level of sediment flux or the point of inflection before the next event or daily fluctuation. 

As a result, we chose to count two adjacent peaks as two events and possibly cut off long tails of events, e.g. if 

mass movements lead to elevated sediment fluxes for a longer period.  205 
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For the Tumpen catchment, we visually identified SSY peaks as described above for the years 2011 to 2020 to 

ensure comparability. However, given the almost 800 km² area of the Tumpen catchment with considerable to-

pography, there are only few stations measuring precipitation for the whole time and in sufficient temporal (i.e. 

sub-daily and preferably sub-hourly) resolution. Therefore, we did not classify the events with respect to precipi-

tation events.  210 

 

2.2.3. GIS analysis, snow cover data and statistical analyses 

To derive the catchment areas for the three gauges, we used ArcGIS (version 10.6.1) and the 10 m Digital Terrain 

Model of Tyrol (Land Tirol, 2016) to calculate the flow direction (D8) and flow accumulation and finally used the 

watershed tool. We then clipped the glacier areas of the glacier inventory 3 (Fischer et al., 2015) and 4 (Buckel 215 

and Otto, 2018) with the resulting catchment areas to obtain the respective glacier areas within the catchment 

(Table 1) and erased the areas of glacier inventory 4 of 2015 from the inventory 3 of 2006 to assess recently 

deglaciated areas.  

In order to analyze land cover classes within the different elevation bands, we first calculated 250 m elevation 

bands for the whole catchment area upstream of gauge Tumpen using the contour tool. Subsequently, we clipped 220 

glacier inventories and CORINE land cover data (Umweltbundesamt, 2018) to the elevation band areas.  

We calculated average weekly snow free areas based on data provided by Matiu et al. (2020), who used MODIS 

remote sensing products and derived daily nearly cloud-free snow cover data for the European Alps using temporal 

and spatial filters. We used these gridded data and intersected them with the areas of the 250 m elevation bands to 

gain the daily percentages of snow free area for each elevation band and averaged these for each week of the year. 225 

In this, our basic idea is similar to the active contributing drainage area (ACDA) as proposed by Li et al. (2021), 

which uses the freezing line altitude to quantify the percentage of the catchment where the ground is unfrozen and 

thus susceptible to erosion. However, as an advantage to the ACDA, which yields the percentage of unfrozen area 

for the whole catchment, we are able to differentiate between different areas within the catchment. We consider 

the resulting snow free fraction of the respective elevation bands as potentially erodible under the assumption that 230 

the ground no longer covered by snow is largely unfrozen and thus susceptible to erosion.  

All statistical analyses were conducted in R version 3.5.1 (R Core Team, 2018). In order to assess discharge and 

sediment flux seasonality, we calculated weekly Pardé-coefficients (i.e. the ratio of the average weekly discharge 

to the average annual discharge) and the average percentage of annual suspended sediment loads transported in a 

given week of year. 235 

 

3 Results 

3.1. The Vent catchment has the highest mean annual discharge and suspended sediment yields 

To compare discharge and suspended sediment yields in space, we calculated specific values (i.e. per unit area) 

for the catchments above the gauges Vent, Sölden and Tumpen, but also for the areas in between the gauges: e.g. 240 

the intermediate catchment S-V refers to the area within the Sölden catchment excluding the catchment upstream 

of gauge Vent (Fig. 3).  
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Figure 3: Mean annual specific discharge (sQ) and suspended sediment yields (SSY) are highest at the gauges Vent as 245 
compared to Sölden and Tumpen and the intermediate catchments between gauges Vent and Sölden (S-V) and Sölden 

and Tumpen (T-S). Bars are divided into seasons: winter (Jan – Mar), spring (Apr – Jun), summer (Jul – Sep), au-

tumn (Oct – Dec). Whiskers depict minimum and maximum annual values.  

Mean annual discharge per area (sQ) are highest in the Vent catchment with 1543 mm/a, and gradually decrease 

to 885 mm/a in the T-S catchment, i.e. the area between the lowest gauge in Tumpen and the gauge in Sölden. 250 

Suspended sediment yields (SSY) are markedly higher in the Vent catchment (1532 t/km² per year on average) as 

compared to Sölden and Tumpen (1071 and 954 t/km² on average) and the intermediate catchments. Adding to 

this, SSY show much higher interannual variability than sQ and the variability is highest at the gauge in Vent.  

Remarkably, the specific discharge in the order of 1500 mm at the gauge in Vent seems unusually high compared 

to areal precipitation estimates for the Vent catchment between 1200 and 1500 (Hanzer et al., 2018; Kuhn et al., 255 

2016; Stoll et al., 2020), leaving almost no room for evapotranspiration. However, this is due to the contribution 

of non-equilibrium glacier melt and thus release of water from the long-term glacier storage (Hock et al., 2005). 

Absolute mean annual discharge and sediment loads increase with increasing catchment size (Table 3). The dis-

tributions of both fluxes are severely right-skewed (as the location of mean to maximum values show) since low 

values are much more frequent than high values. Maximum sediment concentrations decrease slightly with in-260 

creasing catchment size, which points to a dampening along the flow-path. 

 

Table 3: Mean (Min - Max) observed values of discharge (Q), suspended sediment concentrations (SSC) and suspended 

sediment loads (SSL) at the three gauges. For better comparability between the stations, SSC recorded during the winter 

months from November to April were set to zero if there were NA values. 265 

Station Q [m³/s] 
mean (min-max) 

SSC [g/l] 
mean (min-max) 

SSL [103 t/year]  
mean (min-max) 

Vent 
(2006 – 2020) 

4.8  
(0.1 – 76.3) 

0.54 
(0 – 59.2) 

150.3 
(72.0 – 238.0) 

Sölden 
(2012 – 2020) 

19.2 
(0.9 – 247.6) 

0.59 
(0 – 49.2) 

472.3 
(291.3 – 797.0) 

Tumpen 
(2006 – 2020) 

27.2 
(2.7 – 266.2) 

0.60 
(0 – 50.7) 

747.6 
(339.8 – 1167.8) 
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3.2. Differences during the glacier melt period account for most of the differences in mean annual Q 

and SSY  270 

To investigate whether the spatial differences of mean annual fluxes are equally distributed across the seasons, we 

subdivided the year into seasons that match governing hydrological processes, so that “spring” from April to June 

corresponds to the time dominated by snowmelt and “summer” from July to September corresponds to the bulk of 

glacier melt (Fig. 3). 

Both discharge and suspended sediment fluxes are not equally distributed throughout the year. The discharge re-275 

gimes at all gauges are clearly dominated by spring and summer streamflow (April – September), whereas autumn 

and winter discharge contributions (October – March) are small and almost equal across all sub-catchments. The 

most striking differences between the sub-catchments occur during the glacier melt period in summer, when spe-

cific discharge in the Vent catchment is markedly higher than in the downstream catchments.  

Sediment fluxes are even more seasonal than discharge, with almost no transport during autumn and winter (Oc-280 

tober – March). Mean summer SSY are markedly higher in Vent (1250 t/km² per year) than in the other catchments 

(660 – 860 t/km² per year) and differences between the sub-catchments are less pronounced in spring (ranging 

from 200 t/km² in the S-V to 300 t/km² in the T-S sub-catchment). 

It has to be noted, that there are no turbidity measurements and resulting suspended sediment concentrations at the 

Vent and Sölden gauges during late autumn and winter to prevent damage to the equipment. However, turbidity 285 

recordings at the Tumpen gauge show that the total SSY of roughly 0.5 t/km² in January to March accounts for 

less than 1% of the annual SSY and is thus negligible compared to the rest of the year. Furthermore, the equipment 

in Vent and Sölden is reinstalled before the initial rise in concentrations in spring. 

 

3.3. Mean annual discharge and suspended sediment fluxes correlate positively to glacier cover 290 

Annual specific discharge (sQ) and suspended sediment yields (SSY) show significant positive correlations (α = 

0.001) with increasing glacier cover in the respective catchments, although the high interannual variation in SSY 

leads to a much weaker relationship and lower R² than for sQ (Fig. 4).  

 

Figure 4: Annual specific discharge (left) and annual suspended sediment yields (right) increase with increasing glac-295 
ier cover (glacier inventory 4, 2015; Buckel and Otto, 2018 ) in the sub-catchments 

Specific discharge increases with increasing glacier cover because glacier storage is not in equilibrium and glacier 

melt water contributes a large part to the annual discharge (Kuhn et al., 2016). For example, the annual mass 
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balances of the Vernagtferner and Hintereisferner within the Vent catchment have been negative since the 1980s 

and their mean annual mass balances in the years 2005/06 to 2017/18 amounted to -909 and -1243 mm water 300 

equivalent (World Glacier Monitoring Service, 2021). (Please note that these values are calculated relative to the 

respective glacier area and are thus not directly comparable to catchment precipitation or discharge.) 

However, precipitation also increases with elevation. The mean annual precipitation recorded close to the Vent 

gauge is 666 mm while areal precipitation of the whole catchment is estimated between 1200 and 1500 mm, and 

for the 11.4 km² Vernagtferner sub-catchment (featuring 74 % glaciation and an elevation range of 2600 – 3600 305 

m), even 1525 to 1900 mm are reported (Braun et al., 2007; Hanzer et al., 2018; Kuhn et al., 2016; Stoll et al., 

2020).  

 

3.4. Annual discharge and sediment yields correlate positively to annual glacier mass balances within 

the Vent catchment  310 

As mentioned above, the interannual variability in sediment yields is much higher than for discharge. While min-

imum and maximum annual discharge volumes at the three gauges differed by a factor of 1.3 to 1.5 in the years 

2006 to 2020, sediment yields varied by a factor of 3.3 to 5.4 (see also whiskers in Fig. 3 or the range of values at 

each gauge in Fig. 4 and 5). In both variables, the variability was most pronounced at the highest gauge in Vent. 

In order to examine this, we considered the relationship between annual discharge and annual suspended sediment 315 

yields as well as the relationship of both to annual glacier balances. Unfortunately, we had to limit the latter anal-

ysis to the Vent catchment as mass balance data for glaciers within the other sub-catchments are lacking.  

We did not find a clear relationship of annual discharge volumes and annual sediment loads at any of the gauges 

(Fig. 5), and conclude that annual discharge volumes do not seem to explain much of the interannual variability in 

SSY.  320 

 

Figure 5: Annual suspended sediment loads and discharge volumes at the gauges in Vent (left), Sölden (center) and 

Tumpen (right) do not reveal a clear relationship. 

However, the interannual variability in SSY and sQ can be at least partly be attributed to differences in glacier 

mass balances: Both variables in Vent correlate positively with the cumulative annual mass balances of Vernagt- 325 

and Hintereisferner (Fig. 6), the two largest glaciers within the Vent catchment. Although the correlation for the 

entire available discharge and mass balance time series since 1976 (grey line in left panel of Fig. 6) is significant 

(α = 0.01), the correlation for the years since 2006 (i.e. the period of time investigated in this paper) is not signif-

icant and has a very low R². We attribute this to the leverage of individual years such as 2014, when a ca. 10-year 

flood occurred in the Ötztaler Ache on August 13th and the percentage of the annual discharge during precipitation 330 

https://doi.org/10.5194/esurf-2021-85
Preprint. Discussion started: 11 January 2022
c© Author(s) 2022. CC BY 4.0 License.



12 
 

events was 9% (the highest percentage of the 10 years examined, see Fig. 6) while the annual balance was unusu-

ally close to zero. The correlation between SSY and annual balances is significant at a level of α = 0.05. 

 

Figure 6: Annual discharge and suspended sediment yields at the gauge in Vent correlate positively to the sum of an-

nual mass balances of the two largest glaciers within the Vent catchment Vernagtferner and Hintereisferner (World 335 
Glacier Monitoring Service, 2021) in mm, corresponding to the respective glacier areas. Grey points, line and R² in 

the left panel refer to the entire available discharge and mass balance time series starting in 1976. 

 

3.5. Discharge and sediment fluxes show distinct seasonalities in all sub-catchments and sediment 

fluxes are constrained to a shorter period of time 340 

In order to assess discharge and sediment flux seasonality across spatial scales, we calculated weekly Pardé-coef-

ficients and the percentage of suspended sediment loads transported in a given week of year (Fig. 7). 

Discharge volumes are very low between October and March at all gauges due to temperatures below the freezing 

point. As temperatures start to rise in spring, snowmelt usually starts around March in low elevations and mid-

May in high elevations (see also Fig. 8) causing the initial increases in discharge. In June, snowmelt can contribute 345 

up to 80 % of the total discharge volumes in the Vent catchment (Schmieder et al., 2018). Glacier melt starts in 

June and peaks in July and August when large glacier areas are snow free, with peak shares of the total discharge 

volumes of 75 % on individual days (Schmieder et al., 2018) before receding as temperatures drop in September 

or October (see also Kormann et al., 2016). Adding to this, precipitation shows a certain (albeit less pronounced) 

seasonality, with a maximum of average monthly precipitation in July (79 mm) and minimum in February (32 350 

mm) as calculated from daily recordings in Vent since 1935 (Stoll et al., 2020). 

The seasonality of suspended sediment yields is even more pronounced than in discharge as sediment fluxes start 

to increase later in the year and decrease earlier than discharge, and are thus constrained to a smaller time window 

at all gauges (Fig. 7). The highest weekly contributions to annual yields occur during the ice-melt dominated period 

after mid-July, coinciding with the highest weekly Pardé-coefficients at the highest gauge Vent but delayed with 355 

respect to the highest Pardé-coefficients at the lower-lying gauges (Fig. 7).  
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Figure 7: Distinct seasonality illustrated by Pardé-coefficients (ratio of average weekly discharge to average annual 

discharge) and percentages of annual SSY fluxes in weekly resolution. Lightly colored areas show minimum and max-

imum values of individual years. 360 

 

3.6. Discharge seasonality changes in space – but sediment seasonality occurs simultaneously at the 

three gauges 

Discharge seasonality becomes more pronounced with elevation (Fig. 7): Of the annual runoff, 62%, 52% and 

50% are generated in summer in Vent, Sölden and Tumpen, and 11%, 13% and 14% in winter and autumn, re-365 

spectively. Thus in lower elevations, discharge volumes are more evenly distributed throughout the year due to 

shorter snow cover periods, a less important contribution of glacier melt and larger relative contributions of pre-

cipitation (Kormann et al., 2016). An analysis of the individual years showed that the timing of the discharge 

increase in early spring is very similar in the three gauges. However, the specific discharge initially is lower in 

Vent as compared to Sölden and Tumpen, as snowmelt starts roughly at the same time in spring in all sub-catch-370 

ments, but at a much lower rate upstream as compared to downstream as temperatures above the freezing point 

occur earlier in lower areas. Later in summer, specific discharge is higher in Vent as compared to Sölden and 

Tumpen. This is likely due to the higher proportion of glaciation further upstream and associated higher daily 

discharge maxima during summer (Gattermayr, 2013) as well as the aforementioned higher precipitation in higher 

elevations which directly contributes to discharge as it does not fall as snow during this time.   375 

Interestingly, the timing and seasonal distribution of specific sediment yields are very similar at the three gauges 

(Fig. 7), although absolute sediment loads are higher at the downstream gauges. This was also confirmed by an 

analysis of individual years: Only in four of the 15 years of data (2007, 2009, 2018 and 2019), very small portions 

of the annual yield in Tumpen were transported starting two weeks before the initial rise in Vent, but the first sharp 

increase in SSY was always simultaneous at the three gauges. The suspended sediment seasonality changes only 380 
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slightly with elevation: 81%, 80% and 76% of the annual SSY are transported in summer in Vent, Sölden and 

Tumpen and 18%, 19% and 23% in spring, respectively. The striking decrease in SSY at all stations in week 33 

(i.e. around mid-August) is due to the coincidental absence of large events in the observed period in this week as 

compared to the weeks before and after.  

 385 

3.7. Sediment flux onset in spring coincides with snow melt above 2500 m a.s.l.  

To explore the simultaneous onset of sediment fluxes and the delay compared to the initial rises in discharge, we 

used a synoptic view of the mean spatiotemporal snow cover evolution with sediment seasonality.  

 

Figure 8: The spring increase in mean weekly percentage of annual suspended sediment yields coincides with the in-390 
crease in mean weekly snow free fraction of the areas above 2500 m a.s.l. within the Tumpen catchment.  

 

The spatial snow cover evolution shows that in March (ca. week 10), the entire area above 2000 m is usually 

covered by snow (Fig. 8). Until the end of April (ca. week 18), the area above 2500 m is still entirely snow covered 

while about 20% and 60% of the two elevation bands below 2500 m are already snow-free. Starting in May, snow 395 

melts in areas above 2750m. This is well in accordance with snow melt timing in the Vent catchment as reported 

by (Kuhn et al., 2016).  

The initial rise in suspended sediment fluxes at all gauges coincides with the onset of snowmelt above 2500 m. 

Further differentiation between the elevation bands above 2500 m is difficult: firstly, an analysis of the individual 

years showed that snowmelt often started simultaneous in all elevation bands above 2500 m (although with differ-400 

ent intensities). Furthermore, (Matiu et al., 2020) warn against too detailed analyses of short periods of time due 

to uncertainties in the snow cover data and advise to average over weeks to months. Yet what was clear from the 

analysis of individual years as well as from Fig. 7 is that the onset of snowpack removal in the areas below 2500 

m always preceded the initial rise in suspended sediment fluxes at the three gauges. 

In autumn, sediment transport declines as soon as the first snow cover starts to build up, which happens simulta-405 

neously at all elevations above 2000m but to variable extents. This concurrence supports the suitability of the 
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snow-free fraction as a proxy for susceptibility to erosion: as soon as snow remains on the ground, temperatures 

must be below the freezing point so that precipitation falls as snow and does not lead to erosion, frozen surfaces 

are no longer erodible and at the same time, surface runoff and glacier melt decreases.  

 410 

3.8. The areas above 2500 m include glacier tongues, bare rock and the lowest parts of the most re-

cently deglaciated areas 

To investigate if the co-occurrence of snowmelt above 2500 m with spring increases in sediment transport is linked 

to changes in land cover, we analyzed CORINE land cover data for the individual elevation bands (Fig. 9). The 

most striking differences between the areas below and above 2500 m a.s.l. are the decrease in natural grasslands 415 

and the increase in bare rock surfaces. Moreover, the first glacier areas can be found above 2500 m and for most 

glaciers in the area, the (tip of the) glacier tongue is located here. In the elevation band below, between 2250 and 

2500 m a.s.l., 93% of the 0.5 km² glacier area that had remained in this elevation band during the glacier inventory 

of 2006 had melted until 2015. Thus the most recently deglaciated proglacial zones – with a much larger area of 

3.2 km² glacier retreat between 2006 and 2015 – are located between 2500 and 2750 m, uncovering large amounts 420 

of glacially conditioned sediment.  

 

Figure 9: Land cover in the elevation bands between 2000 and 3000 m a.s.l. based on CORINE land cover data 

(Umweltbundesamt, 2018) 

 425 

3.9. Individual events account for a higher share of sediment fluxes compared to discharge and their 

relative importance is similar in Vent and Tumpen  

To compare the relative importance of events in space, we visually identified the strongest sediment flux events 

of each year from 2011 to 2020 in Vent and Tumpen and analyzed the discharge and sediment fluxes during these 

events.  430 

For Vent, we identified between 6 and 16 events per year and a total of 100 events. Of the counted events, 95% 

were shorter than 24 hours and the periods classified as events correspond to 0.5 to 1.5 % of the year. All events 

combined transported on average 7% of the annual discharge (min. 4% - max. 9 %, i.e. 6*106 to 13*106 m³) and 

25 % of the annual sediment yield in Vent (min. 12% – max. 40%, i.e. 8.5*103 to 57*103 t).  
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In Tumpen, we identified between 7 and 13 events per year and a total of 84 events. Compared to the 100 events 435 

identified in Vent, this means that some of the events detected in Vent did not stand out against the diurnal ampli-

tude in Tumpen. The events in Tumpen were slightly longer than the events in Vent, as only 83 % were shorter 

than 24 hours. All events combined on average accounted for 6 % of the annual discharge (between 4 and 9 % of 

the annual discharge, i.e. 35*106 and 80*106 m³) and 26 % of the annual SSY in Tumpen (min. 16 % to max. 

38%, i.e. 102*103 t to 372*103 t). Similar to Vent, the periods classified as events correspond to 1 to 2 % of the 440 

year. 

Although we only examined the events of the last 10 years, these proportions seem to be representative for the 

whole time series since 2006, as indicated by the grey area in Fig. 10, which shows that up to almost 40 % of the 

cumulated yield is transported within 2 % of the time. Thus, the fluxes during events can be very relevant for 

overall sediment dynamics, but are less important for discharge. In combination with the more pronounced sea-445 

sonality of sediment fluxes, this explains the much “flashier” behavior as compared to discharge (Fig. 10).  

 

Figure 10: Duration curves of Q and SSY based on 15-minute data. The grey area indicates 0 - 2 % of the time and 

represents the time classified as events. Note that the three lines for suspended sediment yields are very similar and 

might appear as if it was only one line.  450 

 
3.10. Peak sediment fluxes and concentrations are associated with (precipitation) events, but the bulk 

of discharge and sediment fluxes are thermally induced 

To pinpoint the dominant processes on the sub-seasonal scale, we analyzed how important precipitation events 

were for sediment dynamics as compared to thermally induced flux events, i.e. snow or glacier melt. For this 455 

purpose, we analyzed sediment events with respect to the antecedent temperature, precipitation and snow cover 

conditions. We focused this analysis on the highest catchment in Vent and to the years 2011 to 2020 due to the 

limited availability of long (quasi) gap-free precipitation time series in high temporal resolution.  

Of the identified Events, 84% were associated with precipitation while the remaining events were associated with 

the melting of snow or ice. The events associated with precipitation transported on average 21% (min. 7% - max. 460 

40 %) of the annual SSY and 5% (min. 2% - max. 9%) of the annual discharge. The most extreme event was 

observed in August 2014, when 26% of the annual SSL (ca. 26 000 t) and 2.2% of the annual discharge were 

transported in only 25 hours. We hypothesize that this was associated with mass movements, as the event was 
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preceded by a prolonged precipitation period (67 mm within 7 days and 30 mm within 24 hours before the event), 

yet do not have field observations from this time. 465 

However, we did observe an event on August 28th 2020, when an extreme precipitation event of about 100 mm 

within 3 days lead to a mass wasting event onto the Hintereisferner, one of the largest glaciers within the Vent 

catchment. Thirteen percent of the total annual suspended sediment load at gauge Vent (about 15 000 t) were 

exported within the first 30 hours and 20% within four days. The starting zone of the observed mass movement is 

located in an area with a high probability of permafrost occurrence (Boeckli et al., 2012). 470 

 

4 Discussion  

The aim of the present study was to pinpoint the areas and processes most relevant to discharge and sediment 

dynamics on several spatial and temporal scales in the Ötztal. To our knowledge, it represents the first study using 

a nested catchment setup and investigating several temporal scales in a glacierized, alpine setting.  475 

Firstly, this approach allowed us to determine the order of magnitude of mean annual discharge and suspended 

sediment yields (SSY) on several spatial scales of 900 to 1500 mm for discharge and 1000 to 1500 t/km² for SSY, 

which generally correspond well to values reported for more catchments in the Ötztal and Stubai Alps (Schöber 

and Hofer, 2018). SSY fall at the high end compared to the extensive collection of studies compiled by Hinderer 

et al. (2013) for the European Alps: only three catchments (the Haut Glacier D’Arolla and, the Tsidjiore Nouve 480 

and the Vispa with higher or similar glacier covers as compared to Vent), showed higher annual SSY than at the 

gauge Vent.  

Secondly, we found that mean annual values for both Q and SSY correlate positively with glacier area. Similar 

correlations have been reported across the European Alps (Hinderer et al., 2013; Lalk et al., 2014; Schöber and 

Hofer, 2018) and now this relationship has been demonstrated for a setting of nested catchments. The increase of 485 

discharge with glacier cover is reasonable given the higher contribution of glacier meltwater in Vent as compared 

to lower elevations, where snowmelt gains in relative importance (Kormann et al., 2016; Weber and Prasch, 2016). 

Further contributing factors are higher precipitation amounts in higher elevations due to the considerable precipi-

tation gradient (about 5 % per 100m, Schöber et al., 2014) and lower temperatures and vegetation cover leading 

to lower evapotranspiration. The increase of SSY with glacier cover is in line with the current understanding that 490 

glaciers act as important sediment sources, especially during the transitional, paraglacial state of deglatiation (Bal-

lantyne, 2002), through glacial erosion, the provision of proglacial sediments following their retreat and the 

transport of subglacial sediments by meltwaters (Beylich et al., 2017; Delaney et al., 2018a; Schöber and Hofer, 

2018). This is further supported by the positive correlation between annual glacier mass balances and SSY as well 

as our finding that differences in mean annual Q and SSY were mainly due to differences during the glacier melt 495 

period. Interestingly, specific discharge volumes show much lower interannual variability than suspended sedi-

ment yields, which we account to the compensating effect of glaciers for interannual streamflow variability (Hock 

et al., 2005). 

We further assessed the spatio-temporal distribution through analyzing the seasonality of both fluxes at the three 

gauges. This showed that discharge seasonality is scale-dependent, as discharge increases earlier at the lower 500 

gauges due to earlier onsets of snowmelt in lower elevations (see also Kormann et al., 2016, Weber and Prasch, 

2016). Accordingly, the highest weekly Pardé-coefficients are observed during the snowmelt phase at the gauges 

Sölden and Tumpen but during the glacier melt phase in Vent.  
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In contrast, SSY seasonality is synchronous at the three gauges and sediment transport seems to be limited in 

spring as the initial rise in discharge volumes precedes the beginning of sediment transport and similar discharge 505 

volumes transport higher sediment fluxes in late summer as compared to spring. We concluded that areas above 

2500 m are crucial source areas from the co-occurrence of the spring increase in sediment seasonality at all three 

gauges with snowmelt above 2500 m a.s.l., under the assumption that areas are unfrozen and erodible after snow-

pack removal. The areas above 2500 m contain landscape elements such as glacier tongues and proglacial areas 

which have been identified as very significant for sediment dynamics in other catchments (Delaney et al., 2018a; 510 

Orwin and Smart, 2004; Schöber and Hofer, 2018). For example, Delaney et al. (2018a) found that although far 

more sediment originated subglacially, erosion rates in proglacial areas were over 50 times greater than in the rest 

of the Griesgletscher catchment in the Swiss Alps.  

As another characteristic of the areas above 2500 m, permafrost is likely to occur in favorable or cold conditions 

according to the permafrost distribution map provided by Boeckli et al. (2012) and as demonstrated by Klug et al. 515 

(2017). Thus, erosion processes associated with permafrost thawing could also play a role, as for example the 

active layer becomes susceptible to pluvial erosion once it has thawed (Li et al., 2021), although these processes 

probably do not take effect before the end of the snowmelt period. Still, assuming that permafrost degradation is 

an ongoing and largely irreversible process, the increase of erodible surfaces in this elevation band due to perma-

frost melt seems very likely. 520 

We conclude that sediment transport in all three catchments is limited as long as the areas above 2500 m are frozen 

or snow-covered and subglacial sediment sources are still inactive. This has implications for the future, since these 

areas will likely be snow-free for longer periods in summer (Hanus et al., 2021; Hanzer et al., 2018) during which 

sediments from these areas can be mobilized. At the same time, the crucial areas might increase in size as glaciers 

retreat and recently deglaciated areas increase.  525 

In even higher temporal resolution, we found that highest sediment concentrations and loads were associated with 

events, most of which were associated with precipitation. All events combined (up to 2 % of the total time frame) 

on average accounted for 25 and 26 % of the annual sediment yields but only 7 and 6 % of annual discharge in 

Vent and Tumpen. Similar proportions have been reported for other glacierized catchments (Leggat et al., 2015; 

Wulf et al., 2012) which suggests a greater availability and/or easier mobilization of sediments as compared to 530 

fluvial systems where up to 90% of sediment is transported during short, high-discharge events (Delaney et al., 

2018b). While this implies that so far, thermally induced sediment transport through snow and glacier melt yields 

the biggest share of suspended sediment load, we also showed that individual summer rainstorm events can account 

for up to 26 % of the annual yield (ca. 26 000 t) within just over 24 hours if mass movements are involved.  

We suggest that hydro-sedimentological events such as one observed in August 2020 – involving mass movements 535 

that were triggered by heavy precipitation and are probably associated with permafrost thaw – are likely to occur 

more frequently in the future: In view of expected future developments, such as more frequent high-intensity 

summer rainstorms (Giorgi et al., 2016), prolonged snow-free periods in summer during which these rainstorms 

can become erosive (Hanus et al., 2021; Hanzer et al., 2018), the exposure of vast amounts of sediment due to 

glacier retreat (Carrivick and Heckmann, 2017; Lane et al., 2017) and accelerating permafrost thaw which facili-540 

tates more frequent slope-failure events (Savi et al., 2020), heavy precipitation events have the potential to gain in 

importance drastically with regard to driving sediment export.  
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5 Conclusion  

Glaciated high-alpine areas are expected to change fundamentally with respect to their suspended sediment and 545 

discharge due to climate change, yet little is known on how exactly these changes propagate to sediment dynamics. 

To provide the basis for future studies investigating these future changes, we analyzed discharge and suspended 

sediment data from the recent past in a nested catchment setup in the Ötztal in Tyrol, Austria, and aimed to identify 

the areas, time periods and processes that are crucial for suspended sediment and discharge dynamics. 

We showed that mean annual discharge and suspended sediment fluxes were highest in the smallest, highest, most 550 

glaciated sub-catchment above gauge Vent and that annual fluxes correlated significantly with annual glacier mass 

balances. This demonstrates that glaciated areas are important sediment sources and glacier meltwater contribution 

is high.  

Discharge seasonality is more pronounced at higher elevations due to a later onset of snowmelt, higher glacier 

melt contributions and a considerable positive precipitation gradient with elevation.  555 

However, the onset of suspended sediment fluxes in spring occurs almost synchronous at the three gauges and the 

time lag compared to the spring increase in discharge points towards a limitation of sediments during this time. 

We analyzed sediment seasonality in synopsis with snowmelt timings in different elevation bands, which suggests 

that the areas above 2500 m a.s.l., including glacier tongues, bare rock surfaces and recently deglaciated areas, are 

crucial for suspended sediment fluxes. 560 

We showed that so far, precipitation events play a subordinate role as compared to thermally induced discharge 

and suspended sediment fluxes. However, we suggest that hydro-sedimentological events involving mass move-

ments triggered by heavy precipitation and possibly permafrost thaw are likely to occur more frequently in the 

future. This would result in a shift in relative importance of precipitation events for sediment fluxes.  

Our study extends the scientific knowledge on current hydro-sedimentological dynamics in glaciated high alpine 565 

areas and provides a baseline for investigations on projected future changes in hydro-sedimentological system 

dynamics. Such future investigations should focus on the areas above 2500 m and the role of precipitation events 

when addressing future changes in suspended sediment and discharge dynamics, e.g. in modelling studies.  

 

6 Data availability 570 

Discharge and suspended sediment concentration data from the gauges Vent and Tumpen recorded by the Hydro-

graphic Service of Tyrol, Austria, as well as sediment concentrations from our samples taken in Sölden are pub-

lished under DOI 10.23728/b2share.be13f43ce9bb46d8a7eedb7b56df3140. 

Discharge and turbidity time series recorded by the TiWAG at the gauge in Sölden along with suspended sediment 

concentration data in TiWAG samples can be requested via info-ausbau.kw.kaunertal@tiwag.at. 575 

Precipitation and air temperature data recorded at the Vernagtferner hydro-meteorological station by the Bavarian 

Academy of Sciences and Humanities are successively made available on PANGEA and data until 2012 are al-

ready available at https://doi.pangaea.de/10.1594/PANGAEA.829530. 

The DTM of Tyrol is available at https://www.data.gv.at/katalog/dataset/land-tirol_tirolgelnde (Land Tirol, 2016). 

Land cover data are available at https://www.data.gv.at/katalog/dataset/clc2018 (Umweltbundesamt, 2018). 580 

Glacier inventories are available at DOI 10.1594/PANGAEA.844985 (Fischer et al., 2015) and DOI 10.1594/PAN-

GAEA.887415 (Buckel and Otto, 2018). Glacier mass balances are available at DOI 10.5904/wgms-fog-2021-05, 

2021 (World Glacier Monitoring Service, 2021). Snow cover data are available via DOI 10.3390/data5010001 

(Matiu et al., 2020). 

https://doi.org/10.5194/esurf-2021-85
Preprint. Discussion started: 11 January 2022
c© Author(s) 2022. CC BY 4.0 License.



20 
 

7 Author contribution 585 

LKS planned the sampling and conceptualized the study together with the supervisors TF and AB. TB and JS 

mentored and reviewed. LKS conducted the statistical analyses with support and supervision by TF and AB. LKS 

conducted the GIS analysis. ER developed the code and performed the calculations for the snow cover analysis. 

LKS prepared the original draft including all figures and all authors contributed to the writing of this manuscript. 

 590 

8 Competing interests 

The authors declare that they have no conflict of interest. 

 

9 Acknowledgments 

This work was funded by the DFG Research Training Group “Natural Hazards and Risks in a Changing World'' 595 

(NatRisk Change GRK 2043/1 and GRK 2043/2) as well as a field work fellowship of the German Hydrological 

Society (DHG).  

We thank the Hydrographic Service of Tyrol, Austria, the TiWAG Tirolean hydropower corporation and the Ba-

varian Academy of Sciences and Humanities for the provision of data as well as logistical support and fruitful 

discussions.  600 

We thank Peter Grosse and Marvin Teschner for their support in field, laboratory work and data analyses, Nina 

Lena Neumann and Joseph Pscherer for their laboratory work and Daniel Bazant for his support during the GIS 

analysis. 

We thank Stefan Achleitner, Carolina Kinzel and the Environmental Engineering laboratory at the University of 

Innsbruck for their kind support during field and laboratory work. 605 

References 

Abermann, J., Lambrecht, A., Fischer, A., and Kuhn, M.: Quantifying changes and trends in glacier area and 

volume in the Austrian Ötztal Alps (1969-1997-2006), The Cryosphere, 3, 205–215, doi: 10.5194/tc-3-205-2009, 

2009. 

Ballantyne, C. K.: Paraglacial geomorphology, Quat. Sci. Rev., 21, 1935–2017, doi: 10.1016/S0277-610 

3791(02)00005-7, 2002. 

Beniston, M., Farinotti, D., Stoffel, M., Andreassen, L. M., Coppola, E., Eckert, N., Fantini, A., Giacona, F., 

Hauck, C., Huss, M., Huwald, H., Lehning, M., López-Moreno, J.-I., Magnusson, J., Marty, C., Morán-Tejéda, 

E., Morin, S., Naaim, M., Provenzale, A., Rabatel, A., Six, D., Stötter, J., Strasser, U., Terzago, S., and Vincent, 

C.: The European mountain cryosphere: a review of its current state, trends, and future challenges, The 615 

Cryosphere, 12, 759–794, doi: 10.5194/tc-12-759-2018, 2018. 

Beylich, A. A., Laute, K., and Storms, J. E. A.: Contemporary suspended sediment dynamics within two partly 

glacierized mountain drainage basins in western Norway (Erdalen and Bødalen, inner Nordfjord), 

Geomorphology, 287, 126–143, doi: 10.1016/j.geomorph.2015.12.013, 2017. 

Boeckli, L., Brenning, A., Gruber, S., and Noetzli, J.: Permafrost distribution in the European Alps: calculation 620 

and evaluation of an index map and summary statistics, The Cryosphere, 6, 807–820, doi: 10.5194/tc-6-807-

2012, 2012. 

Braun, L. N., Escher-Vetter, H., Siebers, M., and Weber, M.: Water Balance of the highly Glaciated Vernagt 

Basin, Ötztal Alps, in: The water balance of the alps: what do we need to protect the water resources of the 

Alps? ; proceedings of the conference held at Innsbruck university, 28 - 29 september 2006, Univ. Press, 625 

Innsbruck, 2007. 

https://doi.org/10.5194/esurf-2021-85
Preprint. Discussion started: 11 January 2022
c© Author(s) 2022. CC BY 4.0 License.



21 
 

Buckel, J. and Otto, J.-C.: The Austrian Glacier Inventory GI 4 (2015) in ArcGis (shapefile) format, doi: 

10.1594/PANGAEA.887415, 2018. 

Bürger, G., Pfister, A., and Bronstert, A.: Temperature-Driven Rise in Extreme Sub-Hourly Rainfall, J. Clim., 

32, 7597–7609, doi: 10.1175/JCLI-D-19-0136.1, 2019. 630 

Carrivick, J. L. and Heckmann, T.: Short-term geomorphological evolution of proglacial systems, 

Geomorphology, 287, 3–28, doi: 10.1016/j.geomorph.2017.01.037, 2017. 

Cavalli, M., Trevisani, S., Comiti, F., and Marchi, L.: Geomorphometric assessment of spatial sediment 

connectivity in small Alpine catchments, Geomorphology, 188, 31–41, doi: 10.1016/j.geomorph.2012.05.007, 

2013. 635 

Chiarle, M., Geertsema, M., Mortara, G., and Clague, J. J.: Relations between climate change and mass 

movement: Perspectives from the Canadian Cordillera and the European Alps, Glob. Planet. Change, 202, 

103499, doi: 10.1016/j.gloplacha.2021.103499, 2021. 

Collins, D. N.: Seasonal and annual variations of suspended sediment transport in meltwaters draining from an 

Alpine glacier, in: Hydrological Measurements; the Water Cycle (Proceedings of two Lausanne Symposia), 9, 640 

1990. 

Collins, D. N.: A conceptually based model of the interaction between flowing meltwater and subglacial 

sediment, Ann. Glaciol., 22, 224–232, doi: 10.3189/1996AoG22-1-224-232, 1996. 

Costa, A., Anghileri, D., and Molnar, P.: Hydroclimatic control on suspended sediment dynamics of a regulated 

Alpine catchment: a conceptual approach, Hydrol. Earth Syst. Sci., 22, 3421–3434, doi: 645 

https://doi.org/10.5194/hess-22-3421-2018, 2018. 

Delaney, I. and Adhikari, S.: Increased Subglacial Sediment Discharge in a Warming Climate: Consideration of 

Ice Dynamics, Glacial Erosion, and Fluvial Sediment Transport, Geophys. Res. Lett., 47, e2019GL085672, doi: 

https://doi.org/10.1029/2019GL085672, 2020. 

Delaney, I., Bauder, A., Huss, M., and Weidmann, Y.: Proglacial erosion rates and processes in a glacierized 650 

catchment in the Swiss Alps, Earth Surf. Process. Landf., 43, 765–778, doi: 10.1002/esp.4239, 2018a. 

Delaney, I., Bauder, A., Werder, M., and Farinotti, D.: Regional and annual variability in subglacial sediment 

transport by water for two glaciers in the Swiss Alps, Front. Earth Sci., 6, 175, doi: 10.3929/ethz-b-000305762, 

2018b. 

Felix, D., Albayrak, I., and Boes, R. M.: In-situ investigation on real-time suspended sediment measurement 655 

techniques: Turbidimetry, acoustic attenuation, laser diffraction (LISST) and vibrating tube densimetry, Int. J. 

Sediment Res., 33, 3–17, doi: 10.1016/j.ijsrc.2017.11.003, 2018. 

Fischer, A., Seiser, B., Stocker-Waldhuber, M., and Abermann, J.: The Austrian Glacier Inventory GI 3, 2006, in 

ArcGIS (shapefile) format, doi: 10.1594/PANGAEA.844985, 2015. 

Gattermayr, W.: Das hydrographische Regime der Ötztaler Ache, in: E.-M. Koch & B. Erschbamer (Hrsg.), 660 

Wetter und Klima im Wandel, vol. 3 Klima, Wetter, Gletscher im Wandel, Innsbruck University Press., 

Innsbruck, 35, 2013. 

Giorgi, F., Torma, C., Coppola, E., Ban, N., Schär, C., and Somot, S.: Enhanced summer convective rainfall at 

Alpine high elevations in response to climate warming, Nat. Geosci., 9, 584–589, doi: 10.1038/ngeo2761, 2016. 

Gobiet, A., Kotlarski, S., Beniston, M., Heinrich, G., Rajczak, J., and Stoffel, M.: 21st century climate change in 665 

the European Alps—A review, Sci. Total Environ., 493, 1138–1151, doi: 10.1016/j.scitotenv.2013.07.050, 2014. 

Guillon, H., Mugnier, J.-L., and Buoncristiani, J.-F.: Proglacial sediment dynamics from daily to seasonal scales 

in a glaciated Alpine catchment (Bossons glacier, Mont Blanc massif, France), Earth Surf. Process. Landf., 43, 

1478–1495, doi: 10.1002/esp.4333, 2018. 

https://doi.org/10.5194/esurf-2021-85
Preprint. Discussion started: 11 January 2022
c© Author(s) 2022. CC BY 4.0 License.



22 
 

Hallet, B., Hunter, L., and Bogen, J.: Rates of erosion and sediment evacuation by glaciers: A review of field 670 

data and their implications, Glob. Planet. Change, 12, 213–235, doi: 10.1016/0921-8181(95)00021-6, 1996. 

Hanus, S., Hrachowitz, M., Zekollari, H., Schoups, G., Vizcaino, M., and Kaitna, R.: Timing and magnitude of 

future annual runoff extremes in contrasting Alpine catchments in Austria, Hydrol. Earth Syst. Sci. Discuss., 1–

35, doi: 10.5194/hess-2021-92, 2021. 

Hanzer, F., Förster, K., Nemec, J., and Strasser, U.: Projected cryospheric and hydrological impacts of 21st 675 

century climate change in the Ötztal Alps (Austria) simulated using a physically based approach, Hydrol. Earth 

Syst. Sci., 22, 1593–1614, doi: https://doi.org/10.5194/hess-22-1593-2018, 2018. 

Hinderer, M., Kastowski, M., Kamelger, A., Bartolini, C., and Schlunegger, F.: River loads and modern 

denudation of the Alps — A review, Earth-Sci. Rev., 118, 11–44, doi: 10.1016/j.earscirev.2013.01.001, 2013. 

Hock, R.: 4.5 Hydrologische Veränderungen in vergletscherten Einzugsgebieten, in: Warnsignal Klima: 680 

Hochgebirge im Wandel., edited by: Lozán, J. L., Breckle, S.-W., and Graßl, H., 5, 2020. 

Hock, R., Jansson, P., and Braun, L. N.: Modelling the Response of Mountain Glacier Discharge to Climate 

Warming, in: Global Change and Mountain Regions: An Overview of Current Knowledge, edited by: Huber, U. 

M., Bugmann, H. K. M., and Reasoner, M. A., Springer Netherlands, Dordrecht, 243–252, doi: 10.1007/1-4020-

3508-X_25, 2005. 685 

Huggel, C., Salzmann, N., Allen, S., Caplan-Auerbach, J., Fischer, L., Haeberli, W., Larsen, C., Schneider, D., 

and Wessels, R.: Recent and future warm extreme events and high-mountain slope stability, Philos. Trans. R. 

Soc. Math. Phys. Eng. Sci., 368, 2435–2459, doi: 10.1098/rsta.2010.0078, 2010. 

Huss, M., Bookhagen, B., Huggel, C., Jacobsen, D., Bradley, R. S., Clague, J. J., Vuille, M., Buytaert, W., 

Cayan, D. R., Greenwood, G., Mark, B. G., Milner, A. M., Weingartner, R., and Winder, M.: Toward mountains 690 

without permanent snow and ice, Earths Future, 5, 418–435, doi: 10.1002/2016EF000514, 2017. 

Hydrographic yearbook of Austria, Hydrographisches Jahrbuch von Österreich, Hydrographischer Dienst in 

Österreich, Bundesministerium für Land- und Forstwirtschaft, Umwelt und Wasserwirtschaft Abteilung VII/3, 

2016. 

Klug, C., Rieg, L., Ott, P., Mössinger, M., Sailer, R., and Stötter, J.: A Multi-Methodological Approach to 695 

Determine Permafrost Occurrence and Ground Surface Subsidence in Mountain Terrain, Tyrol, Austria, Permafr. 

Periglac. Process., 28, 249–265, doi: 10.1002/ppp.1896, 2017. 

Kormann, C., Bronstert, A., Francke, T., Recknagel, T., and Graeff, T.: Model-Based Attribution of High-

Resolution Streamflow Trends in Two Alpine Basins of Western Austria, Hydrology, 3, 7, doi: 

10.3390/hydrology3010007, 2016. 700 

Kuhn, M., Nickus, U., and Pellet, F.: Precipitation Patterns in the Inner Ötztal, 17. Internationale Tagung für 

Alpine Meteorologie, 1982. 

Kuhn, M., Helfricht, K., Ortner, M., Landmann, J., and Gurgiser, W.: Liquid water storage in snow and ice in 86 

Eastern Alpine basins and its changes from 1970–97 to 1998–2006, Ann. Glaciol., 57, 11–18, doi: 

10.1017/aog.2016.24, 2016. 705 

Lalk, P., Haimann, M., and Habersack, H.: Monitoring, Analyse und Interpretation des Schwebstofftransportes 

an österreichischen Flüssen, Österr. Wasser- Abfallwirtsch., 66, 306–315, doi: 10.1007/s00506-014-0175-x, 

2014. 

Land Tirol: Digital terrain model of Tyrol, 10m resolution, EPSG 31254 [data set], 

https://www.data.gv.at/katalog/dataset/land-tirol_tirolgelnde, 2016. 710 

Lane, S. N., Bakker, M., Gabbud, C., Micheletti, N., and Saugy, J.-N.: Sediment export, transient landscape 

response and catchment-scale connectivity following rapid climate warming and Alpine glacier recession, 

Geomorphology, 277, 210–227, doi: 10.1016/j.geomorph.2016.02.015, 2017. 

https://doi.org/10.5194/esurf-2021-85
Preprint. Discussion started: 11 January 2022
c© Author(s) 2022. CC BY 4.0 License.



23 
 

Leggat, M. S., Owens, P. N., Stott, T. A., Forrester, B. J., Déry, S. J., and Menounos, B.: Hydro-meteorological 

drivers and sources of suspended sediment flux in the pro-glacial zone of the retreating Castle Creek Glacier, 715 

Cariboo Mountains, British Columbia, Canada, Earth Surf. Process. Landf., 40, 1542–1559, doi: 

10.1002/esp.3755, 2015. 

Li, D., Overeem, I., Kettner, A., Zhou, Y., and Xixi, L.: Air Temperature Regulates Erodible Landscape, Water, 

and Sediment Fluxes in the Permafrost‐Dominated Catchment on the Tibetan Plateau, Water Resour. Res., 57, 

doi: 10.1029/2020WR028193, 2021. 720 

Matiu, M., Jacob, A., and Notarnicola, C.: Daily MODIS Snow Cover Maps for the European Alps from 2002 

onwards at 250 m Horizontal Resolution Along with a Nearly Cloud-Free Version, Data, 5, 1, doi: 

10.3390/data5010001, 2020. 

Merten, G., Capel, P., and Minella, J. P. G.: Effects of suspended sediment concentration and grain size on three 

optical turbidity sensors, J. Soils Sediments, 14, doi: 10.1007/s11368-013-0813-0, 2014. 725 

Micheletti, N. and Lane, S. N.: Water yield and sediment export in small, partially glaciated Alpine watersheds 

in a warming climate, Water Resour. Res., 52, 4924–4943, doi: 10.1002/2016WR018774, 2016. 

Milliman, J. D. and Syvitski, J. P. M.: Geomorphic/Tectonic Control of Sediment Discharge to the Ocean: The 

Importance of Small Mountainous Rivers, J. Geol., 100, 525–544, doi: 10.1086/629606, 1992. 

Orwin, J. F. and Smart, C. C.: Short-term spatial and temporal patterns of suspended sediment transfer in 730 

proglacial channels, small River Glacier, Canada, Hydrol. Process., 18, 1521–1542, doi: 10.1002/hyp.1402, 

2004. 

R Core Team: R: A language and environment for statistical computing., R Foundation for Statistical 

Computing, Vienna, Austria., 2018. 

Rottler, E., Francke, T., Bürger, G., and Bronstert, A.: Long-term changes in central European river discharge for 735 

1869–2016: impact of changing snow covers, reservoir constructions and an intensified hydrological cycle, 

Hydrol. Earth Syst. Sci., 24, 1721–1740, doi: 10.5194/hess-24-1721-2020, 2020. 

Rottler, E., Vormoor, K., Francke, T., Warscher, M., Strasser, U., and Bronstert, A.: Elevation-dependent 

compensation effects in snowmelt in the Rhine River Basin upstream gauge Basel, Hydrol. Res., 52, 536–557, 

doi: 10.2166/nh.2021.092, 2021. 740 

Savi, S., Comiti, F., and Strecker, M. R.: Pronounced increase in slope instability linked to global warming: A 

case study from the eastern European Alps, Earth Surf. Process. Landf., 46, doi: 

https://doi.org/10.1002/esp.5100, 2020. 

Scherrer, S. C., Fischer, E. M., Posselt, R., Liniger, M. A., Croci-Maspoli, M., and Knutti, R.: Emerging trends 

in heavy precipitation and hot temperature extremes in Switzerland, J. Geophys. Res. Atmospheres, 121, 2626–745 

2637, doi: https://doi.org/10.1002/2015JD024634, 2016. 

Schmieder, J., Marke, T., and Strasser, U.: Wo kommt das Wasser her? Tracerbasierte Analysen im Rofental 

(Ötztaler Alpen, Österreich), Österr. Wasser- Abfallwirtsch., 70, 507–514, doi: 10.1007/s00506-018-0502-8, 

2018. 

Schöber, J. and Hofer, B.: The sediment budget of the glacial streams in the catchment area of the Gepatsch 750 

reservoir in the Ötztal Alps in the period 1965-2015, ICOLD 2018 Wien Int. Com. Large Dam Syst. Proc., 2018. 

Schöber, J., Schneider, K., Helfricht, K., Schattan, P., Achleitner, S., Schöberl, F., and Kirnbauer, R.: Snow 

cover characteristics in a glacierized catchment in the Tyrolean Alps - Improved spatially distributed modelling 

by usage of Lidar data, J. Hydrol., 519, 3492–3510, doi: 10.1016/j.jhydrol.2013.12.054, 2014. 

Sommer, C., Malz, P., Seehaus, T. C., Lippl, S., Zemp, M., and Braun, M. H.: Rapid glacier retreat and 755 

downwasting throughout the European Alps in the early 21 st century, Nat. Commun., 11, 3209, doi: 

10.1038/s41467-020-16818-0, 2020. 

https://doi.org/10.5194/esurf-2021-85
Preprint. Discussion started: 11 January 2022
c© Author(s) 2022. CC BY 4.0 License.



24 
 

Stoll, E., Hanzer, F., Oesterle, F., Nemec, J., Schöber, J., Huttenlau, M., and Förster, K.: What Can We Learn 

from Comparing Glacio-Hydrological Models?, Atmosphere, 11, 981, doi: 10.3390/atmos11090981, 2020. 

Strasser, U., Marke, T., Braun, L., Escher-Vetter, H., Juen, I., Kuhn, M., Maussion, F., Mayer, C., Nicholson, L., 760 

Niedertscheider, K., Sailer, R., Stötter, J., Weber, M., and Kaser, G.: The Rofental: a high Alpine research basin 

(1890–3770 m a.s.l.) in the Ötztal Alps (Austria) with over 150 years of hydrometeorological and glaciological 

observations, Earth Syst. Sci. Data, 10, 151–171, doi: https://doi.org/10.5194/essd-10-151-2018, 2018. 

Swift, D. A., Nienow, P. W., and Hoey, T. B.: Basal sediment evacuation by subglacial meltwater: suspended 

sediment transport from Haut Glacier d’Arolla, Switzerland, Earth Surf. Process. Landf., 30, 867–883, doi: 765 

10.1002/esp.1197, 2005. 

Tiel, M. van, Kohn, I., Loon, A. F. V., and Stahl, K.: The compensating effect of glaciers: Characterizing the 

relation between interannual streamflow variability and glacier cover, Hydrol. Process., 34, doi: 

10.1002/hyp.13603, 2019. 

Tschada, H. and Hofer, B.: Total solids load from the catchment area of the Kaunertal hydroelectric power 770 

station: the results of 25 years of operation, in: Hydrology in Mountain Regions. II - Artificial Reservoirs; 

Waters and Slopes (Proceedings of two Lausanne Symposia), 8, 1990. 

Tsyplenkov, A., Vanmaercke, M., Golosov, V., and Chalov, S.: Suspended sediment budget and intra-event 

sediment dynamics of a small glaciated mountainous catchment in the Northern Caucasus, J. Soils Sediments, 

20, 3266–3281, doi: 10.1007/s11368-020-02633-z, 2020. 775 

Umweltbundesamt: CORINE Landcover 2018 [data set], https://www.data.gv.at/katalog/dataset/clc2018, 2018. 

Vercruysse, K., Grabowski, R. C., and Rickson, R. J.: Suspended sediment transport dynamics in rivers: Multi-

scale drivers of temporal variation, Earth-Sci. Rev., 166, 38–52, doi: 10.1016/j.earscirev.2016.12.016, 2017. 

Vormoor, K., Lawrence, D., Heistermann, M., and Bronstert, A.: Climate change impacts on the seasonality and 

generation processes of floods &ndash; projections and uncertainties for catchments with mixed 780 

snowmelt/rainfall regimes, Hydrol. Earth Syst. Sci., 19, 913–931, doi: 10.5194/hess-19-913-2015, 2015. 

Weber, M. and Prasch, M.: Influence of the Glaciers on Runoff Regime and Its Change, Reg. Assess. Glob. 

Change Impacts, 493–509, doi: 10.1007/978-3-319-16751-0_56, 2016. 

Wijngaard, R. R., Helfricht, K., Schneeberger, K., Huttenlau, M., Schneider, K., and Bierkens, M. F. P.: 

Hydrological response of the Ötztal glacierized catchments to climate change, Hydrol. Res., 47, 979–995, doi: 785 

10.2166/nh.2015.093, 2016. 

World Glacier Monitoring Service: Fluctuations of Glaciers Database, WGMS [data set], doi: 10.5904/wgms-

fog-2021-05, 2021. 

Wulf, H., Bookhagen, B., and Scherler, D.: Climatic and geologic controls on suspended sediment flux in the 

Sutlej River Valley, western Himalaya, Hydrol. Earth Syst. Sci., 16, 2193–2217, doi: 10.5194/hess-16-2193-790 

2012, 2012. 

Zentralanstalt für Meteorologie und Geodynamik (ZAMG), Climate Data of Austria 1971 - 2000: 

www.zamg.ac.at/fix/klima/oe71-00/klima2000/klimadaten_oesterreich_1971_frame1.htm, 2013. 

 

https://doi.org/10.5194/esurf-2021-85
Preprint. Discussion started: 11 January 2022
c© Author(s) 2022. CC BY 4.0 License.


